Assessment of GPM and TRMM Precipitation Products over Singapore

نویسندگان

  • Mou Leong Tan
  • Zheng Duan
چکیده

The evaluation of satellite precipitation products (SPPs) at regional and local scales is essential in improving satellite-based algorithms and sensors, as well as in providing valuable guidance when choosing alternative precipitation data for the local community. The Tropical Rainfall Measuring Mission (TRMM) has made significant contributions to the development of various SPPs since its launch in 1997. The Global Precipitation Measurement (GPM) mission launched in 2014 and is expected to continue the success of TRMM. During the transition from the TRMM era to the GPM era, it is necessary to assess GPM products and make comparisons with TRMM products in different regions to achieve a global view of the performance of GPM products. To this end, this study aims to assess the capability of the latest Integrated Multi-satellite Retrievals for GPM (IMERG) and two TRMM Multisatellite Precipitation Analysis (TMPA) products (TMPA 3B42 and TMPA 3B42RT) in estimating precipitation over Singapore that represents a typical tropical region. The evaluation was conducted at daily, monthly, seasonal and annual scales from 1 April 2014 to 31 January 2016. The capability of SPPs in detecting rainy/non-rainy days and different precipitation classes was also evaluated. The findings showed that: (1) all SPPs correlated well with measurements from gauges at the monthly scale, but moderately at the daily scale; (2) SPPs performed better in the northeast monsoon season (1 December–15 March) than in the inter-monsoon 1 (16 March–31 May), southwest monsoon (1 June–30 September) and inter-monsoon 2 (1 October–30 November) seasons; (3) IMERG had better performance in the characterization of spatial precipitation variability and precipitation detection capability compared to the TMPA products; (4) for the daily precipitation estimates, IMERG had the lowest systematic bias, followed by 3B42 and 3B42RT; and (5) most of the SPPs overestimated moderate precipitation events (1–20 mm/day), while underestimating light (0.1–1 mm/day) and heavy (>20 mm/day) precipitation events. Overall, IMERG is superior but with only slight improvement compared to the TMPA products over Singapore. This study is one of the earliest assessments of IMERG and a comparison of it with TMPA products in Singapore. Our findings were compared with existing studies conducted in other regions, and some limitations of the IMERG and TMPA products in this tropical region were identified and discussed. This study provides an added value to the understanding of the global performance of the IMERG product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China

As the successor of the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission significantly improves the spatial resolution of precipitation estimates from 0.25 ̋ to 0.1 ̋. The present study analyzed the error structures of Integrated Multisatellite Retrievals for GPM (IMERG) monthly precipitation products over Mainland China from March 2014 to February 20...

متن کامل

Global multiscale evaluation of satellite passive microwave retrieval of precipitation 1 during the TRMM and GPM eras : effective resolution and regional diagnostics for 2 future algorithm development

10 The constellation of space-borne passive microwave (MW) sensors, coordinated under 11 the framework of the Precipitation Measurement Missions international agreement, 12 continuously produces observations of clouds and precipitation all over the globe. The Goddard 13 Profiling Algorithm (GPROF) is designed to infer the instantaneous surface precipitation rate 14 from the measured MW radiance...

متن کامل

Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling

Spaceborne precipitation radars are powerful tools used to acquire adequate and highquality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM) mission, which deployed the first spaceborne Kaand Ku-dual frequency radar (DPR), was launched in February 2014 as the upgraded successor of the Tropical...

متن کامل

Assessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous Watershed in Myanmar

Satellite precipitation products from the Global Precipitation Measurement (GPM) mission and its predecessor the Tropical Rainfall Measuring Mission (TRMM) are a critical data source for hydrological applications in ungauged basins. This study conducted an initial and early evaluation of the performance of the Integrated Multi-satellite Retrievals for GPM (IMERG) final run and the TRMM Multi-sa...

متن کامل

Similarity and Error Intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis Using the Best Available Hourly Gauge Network over the Tibetan Plateau

The performance of Day-1 Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 Version 7 (3B42V7), was cross-evaluated using data from the best-available hourly gauge network over the Tibetan Plateau (TP). Analyses of three-hourly rainfall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017